

Ventilation Air Energy Recovery for Laboratories

Otto Van Geet, P.E., NREL
Susan Reilly, P.E., Enermodal
Engineering

Overview

- Ventilation requirements and energy use
- Energy recovery technologies
- Design considerations and key issues
- Codes and standards
- Energy performance
- Resources

Lab Ventilation Requirements

- 100% outside air
- 6-15 ACH versus less than 1 ACH of outside air in an office
- 5-10 times the energy use of an office building

ERV Performance Characteristics

- Effectiveness: Sensible, Latent, Total
 - ratio of actual energy recovered to theoretically possible
- Pressure drop
 - 1" w.g. or less
- □ Face velocity
 - 500 fps or less

Enthalpy Wheels

- Supply and exhaust air streams located next to each other
- □ ~75% effectiveness
- Reduce potential cross-contamination: choice of desiccant and purge
- Part-load operation: wheel speed or bypass

Heat Pipes

- Sensible only
- Adjacent supply and exhaust air streams, unless modified heat pipe used
- 45%-65% effectiveness
- Cross contamination not an issue
- Part-load operation: bypass or tilting
- Relatively low maintenance

Fox Chase Cancer Center

- □ 2 30,000 cfm air-handling units
- Heat pipes with bypass sections and indirect evaporative cooling on exhaust
- □ \$300,000 first cost
- \$72,510 annual energy cost savings

Run-around Loops

- Air streams do not need to be next to one another
- □ 55%-65% effectiveness
- No cross-contamination issues
- □ Familiar components

Run-around Loop Example

Design Considerations

- Identify opportunities
 - Manifold exhaust systems
- Location of supply and exhaust
- Consider options for dehumidification
- Assess risk
- Address potential for fouling and corrosion

Design Considerations

- Control strategies for part-load operation, avoid condensation and freezing
- Space requirements
- O&M costs
- Energy cost savings
- □ First cost impact
- Commissioning

Codes and Standards

- ARI 1060-2000 for Air-to-Air Energy Recovery Ventilation Equipment
- ANSI 84-1991, Method of Testing Air-to-Air Heat Exchangers
- International Mechanical Code, section 514 (2003)
- NFPA 45 (2001)
- ASHRAE 90.1-2001

Energy Simulations Analysis

- □ DOE-2.2
- 100,000 sf building
- Minneapolis, Denver, Seattle, and Atlanta

www.labs21.lbl.gov/docs/labs21anal_3410.pdf

Energy Savings

- Annual energy savings range from \$0.25/cfm to \$2.0/cfm of supply air flow
- Reduces gas usage for space heating by more than 35%
- Peak electricity savings of 3 W/sf with enthalpy wheels in humid climates
- Increase in annual fan energy use offset cooling electricity savings
- Downsize equipment

Resources

- ASHRAE HVAC Systems Handbook
- ASHRAE Laboratory Design Guide
- LBNL: A Design Guide to Energy-Efficient Research Laboratories
- ARI Certified Product Directory: www.ari.org

